Tripling Firm Solar, Wind Energy Output in Texas by Capitalizing on “Complementarity”
Co-locating or integrating distributed solar and wind power resources to maximize their output and contributions to electricity transmission and distribution grids isn’t a new idea. Two researchers at Rice University in Houston modeled solar and wind power production at sites across Texas and found that solar and wind resources exhibit complementary peaks and troughs in production at annual and daily levels, indicating that combining them can yield substantial benefits, both to power grids and consumers.
The results of their research, “Assessing solar and wind complementarity in Texas” published in Renewables: Wind, Water and Solar (2018)5:7, indicate that ramping up solar and wind power generation and taking advantage of their “complementarity” can yield significant gains in grid reliability and resilience, as well as significantly reduce utilities’ operating and capital expenditures and consumers’ electricity bills.
Based on our metric for reliable power production (which looks at the minimum power production you can expect 87.5 percent of the time), combining strong wind and solar sites or wind from different regions could more than triple the amount of consistent energy output compared with the sites taken individually.
– report co-author Joanna Slusarewicz, a junior in Rice University’s Dept. of Civil and Environmental Engineering, told Solar Magazine. “We also found that combining wind and solar can even out discrepancies between how much demand is met at different times of year.”
Wind and solar: the cheapest forms of power generation in Texas
Wind and solar power are now the cheapest forms of electricity generation in Texas, as well as other U.S. states – and that excludes their human and environmental health benefits as compared to conventional, fossil fuel-based forms of power generation. Wind power supplied 17 percent of electrical power generation on the Electricity Reliability Council of Texas (ERCOT) grid in 2017 which spans most of the state. Solar, although growing fast, provided just one percent.
Those percentages are poised to rise further due to a forecast rise in demand and the retirement of aging coal-fired power plants, as well as ongoing declines in the cost of solar and wind power generation. Four coal-fired power plants in ERCOT’s service territory closed last year, the researchers point out. Nonetheless, coal-fired power generation accounted for about one-third of power generation on ERCOT’s grid in 2017.
Managing the variability of solar and wind power generation, as well as stabilizing resulting fluctuations in grid voltage and frequency they can cause, still poses substantial challenges given the capabilities and condition of transmission and distribution grids, however.