Vanadium – Heard it on the Grapevine
In the mining sector if one hangs around long enough, that which was once a subject of excitement and then fell from favour eventually comes around again. In the case of Rare Earths though one had to wait from the 1960s until the early 2000s to see them return as a talking point.
Last decade Vanadium surfaced as a subject of interest primarily tied to the fortunes of the then-booming steel industry. Now Vanadium is coming back with a vengeance for its potential in mass electricity storage devices, namely the Vanadium Redox Battery (or VRB). At the recent Natural Resources Forum event at the London Stock Exchange, which I attended, the guest speaker was Robert Friedland and he was in a Vanadium-induced ecstasy. Never could we have imagined the metal having such a euphoric effect. In any case it gave the Friedland imprimatur to a metal which most metals watchers have rarely paid any attention to due to it (largely) being a by-product of other mining and curiously of the petroleum refining industry.
It was not just Friedland though that has latched onto this bandwagon as we have heard Vanadium name-checked at a number of recent events recently as the next best thing now that Lithium has somewhat done its dash with promoters overcooking the soufflé.
VRB – Go with the Flow
The current end use of the bulk of Vanadium production is well-known with its strict correlation with steel consumption. New uses are potential X factor for the Vanadium space. While aerospace has been growing organically and increasing its share of the usage of the metal the area with the best potential for a quantum leap is in battery applications.
Chief amongst these is the Vanadium Redox (and redox flow) battery (VRB), which is a type of rechargeable flow battery that employs Vanadium ions in different oxidation states to store chemical potential energy. The present form (with sulfuric acid electrolytes) was patented by the University of New South Wales in Australia in 1986 where scientists carried out the first known successful demonstration and commercial development of the all-vanadium redox flow battery employing vanadium in a solution of sulfuric acid in each half in the 1980s. Although the use of vanadium in batteries had been suggested back in the 1970s by a number of scientists including some at NASA.
There are currently a number of suppliers and developers of these battery systems including Ashlawn Energy in the United States, Renewable Energy Dynamics (RED-T) in Ireland, Cellstrom GmbH in Austria, Cellennium in Thailand, and Prudent Energy in the United States and China. The vanadium redox battery results from over 25 years of research, development, testing and evaluation in Australia, Europe, North America and elsewhere.
The image that follows gives a good idea of one of the more practical applications of such batteries. In this case the solar panels collect energy during the day and store it in the battery for release during the period when the solar panels cannot access sunlight.