The Future Of Energy Isn’t Fossil Fuels Or Renewables, It’s Nuclear Fusion
Let’s pretend, for a moment, that the climate doesn’t matter. That we’re completely ignoring the connection between carbon dioxide, the Earth’s atmosphere, the greenhouse effect, global temperatures, ocean acidification, and sea-level rise. From a long-term point of view, we’d still need to plan for our energy future. Fossil fuels, which make up by far the majority of world-wide power today, are an abundant but fundamentally limited resource. Renewable sources like wind, solar, and hydroelectric power have different limitations: they’re inconsistent. There is a long-term solution, though, that overcomes all of these problems: nuclear fusion.
It might seem that the fossil fuel problem is obvious: we cannot simply generate more coal, oil, or natural gas when our present supplies run out. We’ve been burning pretty much every drop we can get our hands on for going on three centuries now, and this problem is going to get worse. Even though we have hundreds of years more before we’re all out, the amount isn’t limitless. There are legitimate, non-warming-related environmental concerns, too.
The burning of fossil fuels generates pollution, since these carbon-based fuel sources contain a lot more than just carbon and hydrogen in their chemical makeup, and burning them (to generate energy) also burns all the impurities, releasing them into the air. In addition, the refining and/or extraction process is dirty, dangerous and can pollute the water table and entire bodies of water, like rivers and lakes.
On the other hand, renewable energy sources are inconsistent, even at their best. Try powering your grid during dry, overcast (or overnight), and drought-riddled times, and you’re doomed to failure. The sheer magnitude of the battery storage capabilities required to power even a single city during insufficient energy-generation conditions is daunting. Simultaneously, the pollution effects associated with creating solar panels, manufacturing wind or hydroelectric turbines, and (especially) with creating the materials needed to store large amounts of energy are tremendous as well. Even what’s touted as “green energy” isn’t devoid of drawbacks.
But there is always the nuclear option. That word itself is enough to elicit strong reactions from many people: nuclear. The idea of nuclear bombs, of radioactive fallout, of meltdowns, and of disasters like Chernobyl, Three Mile Island, and Fukushima — not to mention residual fear from the Cold War — make “NIMBY” the default position for a large number of people. And that’s a fear that’s not wholly without foundation, when it comes to nuclear fission. But fission isn’t the only game in town.
In 1952, the United States detonated Ivy Mike, the first demonstrated nuclear fusion reaction to occur on Earth. Whereas nuclear fission involves taking heavy, unstable (and already radioactive) elements like Thorium, Uranium or Plutonium, initiating a reaction that causes them to split apart into smaller, also radioactive components that release energy, nothing involved in fusion is radioactive at all. The reactants are light, stable elements like isotopes of hydrogen, helium or lithium; the products are also light and stable, like helium, lithium, beryllium or boron.