Cheap, sustainable battery for grid energy storage could be on the horizon
Generating energy is one thing and taking this energy and storing it off the grid is altogether a different ballgame and with many companies and scientist trying to make energy storage more efficient and cheaper, a new study has taken a huge leap towards this.
Chemists at the University of Waterloo have developed a long-lasting zinc-ion battery that costs half the price of current lithium-ion batteries and could help enable communities to shift away from traditional power plants and into renewable solar and wind energy production.
Published in the journal, Nature Energy, the study is about a battery that uses safe, non-flammable, non-toxic materials and a pH-neutral, water-based salt. The battery consists of a water-based electrolyte, a pillared vanadium oxide positive electrode and an inexpensive metallic zinc negative electrode. The battery generates electricity through a reversible process called intercalation, where positively-charged zinc ions are oxidized from the zinc metal negative electrode, travel through the electrolyte and insert between the layers of vanadium oxide nanosheets in the positive electrode. This drives the flow of electrons in the external circuit, creating an electrical current. The reverse process occurs on charge.
The cell represents the first demonstration of zinc ion intercalation in a solid state material that satisfies four vital criteria: high reversibility, rate and capacity and no zinc dendrite formation. It provides more than 1,000 cycles with 80 per cent capacity retention and an estimated energy density of 450 watt-hours per litre. Lithium-ion batteries also operate by intercalation–of lithium ions–but they typically use expensive, flammable, organic electrolytes.
“The worldwide demand for sustainable energy has triggered a search for a reliable, low-cost way to store it,” said Nazar, a Canada Research Chair in Solid State Energy Materials and a University Research Professor in the Department of Chemistry. “The aqueous zinc-ion battery we’ve developed is ideal for this type of application because it’s relatively inexpensive and it’s inherently safe.”