Results From the World’s Biggest Transactive Energy Test
About two years ago, the Pacific Northwest Smart Grid Demonstration Project flipped the switch on the country’s biggest test of a technology concept that could transform distributed energy-grid integration: transactive energy.
The goal was to show that near-real-time energy and pricing data could provide the right signals for utility-controlled distributed energy assets and demand-response platforms to better balance electricity supply and demand. The testing ground was the Bonneville Power Administration (BPA) grid system, with its combination of firm hydropower, growing wind and solar power, and an increasing focus on demand reduction.
Now the experiment is over, the nodes mostly shut down, and the findings have been released in a report from Pacific Northwest National Laboratory (PNNL). The report (PDF) lays out evidence that data sharing will spur big improvements to grid operations — but only if several key “capability enhancements” can be put in place to make it happen.
“We basically validated that the technology works, which is important,” PNNL’s Ron Melton, director of the project, said in an interview this week. At the same time, “We’re trying to push technology forward on the transactive side, and there’s some work that needs to be done on that,” he added.
The project spanned five states, 11 utilities and 60,000 metered customers, linked up to 27 different “nodes” in the Pacific Northwest’s power grid. Every five minutes, those nodes communicated the delivered cost of electricity at that moment, plus a prediction of how much electricity they would need over the coming minutes, hours and days.
These data points included wind power forecasts, marginal costs at different generation plants, transmission system congestion data, and other such factors that go into keeping the transmission system stable. At the same time, they provided a signal that participating utilities could communicate to distribution grid-connected assets — smart thermostats and adjustable water heaters, demand-response-enabled industrial sites, or grid-responsive energy storage systems.